
VIRUS BULLETIN www.virusbtn.com

4 NOVEMBER 2009

PRESCRIPTION MEDICINE
Peter Ferrie
Microsoft, USA

People often ask how we choose the names for viruses.
In this case, it might seem as if it’s in the same way as
pharmaceutical companies choose their product names.
Zekneol – chemical or virus? In this case, it’s a Windows
virus: W32/Zekneol.

EXCEPTIONAL BEHAVIOUR
The virus begins by discarding a number of bytes from the
stack. The number of bytes to be discarded is specifi ed in a
variable in the virus body. However, the value in this variable
is always zero because the polymorphic engine in the virus
does not support the generation of fake push instructions.

After ‘emptying’ the stack, the virus retrieves the return
address from it, which points into kernel32.dll. The virus
intends to use this as a starting point for a search for the PE
header of kernel32.dll. As a precaution, the virus registers
a Structured Exception Handler (SEH), which is supposed
to intercept any exception that occurs. The virus will search
up to 256 pages for the PE header. If the header is not
found, then the virus enters an infi nite loop. This loop is
intentional, it’s not a bug. However, if an exception occurs
during the search, the handler is reached, along with the
fi rst two bugs in the code. After restoring the stack pointer,
we see a write to the ExceptionList fi eld in the Thread
Environment Block (TEB). Presumably the virus author
wanted to unhook the handler, but he forgot to initialize
the pointer register fi rst. Thus, the code attempts to write to
an essentially ‘random’ address. This causes a secondary
exception, which destroys the handler pointer that is on the
stack. What happens next depends on the platform.

On Windows 2000 and earlier, the damaged handler pointer
is assumed to be valid, and so it is used. This of course
causes another exception to occur, and the damaged handler
pointer is used again, causing yet another exception, and
ultimately resulting in an infi nite loop. On Windows XP SP2
and later, the handler pointer is recognized as being invalid,
and the application is terminated.

That’s the fi rst bug. The second bug occurs on the same
instruction. Even if the pointer register were initialized,
the wrong value would be written. When registering or
unregistering a handler via SEH, the value to write to the
ExceptionList fi eld in the TEB is a pointer to a structure. The
structure contains a pointer to the handler. The problem is that
the virus tries to store the pointer to the handler itself. The
reason this happens is that, despite the two values being next
to each other on the stack, the virus picked the wrong one.

In fact, there is a third bug in the same region of code. Even
if the write succeeds (if the virus initializes the register
and chooses the correct pointer to use), the virus attempts
to continue the search. The problem is that the search uses
several other registers, all of which have been modifi ed as a
result of the exception, and none of which are now initialized.

THE PURSUIT OF H-API-NESS
If all goes well, and the virus fi nds the PE header for
kernel32.dll, then the virus resolves some APIs including
two which are never used (GetCurrentDirectoryA() and
GetWindowsDirectoryA()). The virus uses hashes instead
of names, but the hashes are sorted according to the
alphabetical order of the string that they represent. This
means that the export table needs to be parsed only once for
all of the APIs, instead of once for each API, as is common
in some other viruses.

After retrieving the API addresses, the virus registers another
Structured Exception Handler. The same two bugs exist
here regarding the handler behaviour of an uninitialized
register and writing the wrong value. The virus uses the
same hashing method to resolve an API from user32.dll and
several from advapi32.dll (including CryptDecrypt(), which
is never used). However, the virus uses the GetProcAddress()
API to retrieve the address of the ChecksumMappedFile()
API from imagehlp.dll and the SfcIsFileProtected() API
from sfc.dll, if those DLLs are available. The use of the
GetProcAddress() API avoids a common problem regarding
import forwarding. The problem is that while the API name
exists in the DLL, the corresponding API address does not.
If a resolver is not aware of import forwarding, then it will
retrieve the address of a string instead of the address of the
code. In this case, support for import forwarding (which the
GetProcAddress() API provides) is necessary to retrieve the
IsFileProtected() API from sfc.dll, since it is forwarded to
sfc_os.dll in Windows XP and later.

MISDEEDS AND MISDIRECTION
The virus selects a random number from one to fi ve, which
it uses as the number of ‘diversion’ API calls to make. Then
the virus counts the number of ‘safe’ APIs that it found
in the host (this will be described in detail below). The
table contains a number of structures, each of which is two
DWORDs large. The fi rst DWORD is the RVA of the ‘safe’
API, and the second one is the number of parameters that
the API accepts. However, there is a bug in the counting
method. Instead of examining every second DWORD, the
virus examines every DWORD for a value of zero. Thus, if
an API accepts no parameters, then the parameter count slot
will be considered the end of the list. The result is a count

MALWARE ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5NOVEMBER 2009

that is both incorrect and invalid, since the end of the list is
now misaligned. This bug is essentially harmless, though.
The virus chooses randomly from among the APIs, using the
wrong number of entries, as calculated previously. However,
a more serious bug does exist. The virus multiplies by eight
the index of the chosen API. The assumption is that the
original count was simply the number of APIs, and therefore
multiplying by eight would be the correct behaviour.
However, since the count is already too large, and if the
table is very full, then as a result of the multiplication the
access will be beyond the end of the table. If, for example, it
should hit one of the variables that exists after the table, then
that variable will be considered the number of parameters
to place on the stack. This number might be very large and
cause a stack-overfl ow exception, and a possible hang as
described above. Even if the parameter count appeared to
be zero, the assumed API itself is still called, which might
cause some unexpected behaviour.

If the corresponding slot in the table is empty, then no
attempt is made to call the API. If an API does exist, and
if that API accepts parameters, then the virus places onto
the stack a corresponding number of random values before
calling the API. An API is considered ‘safe’ if it will return
an error when passed invalid parameters.

The buggy selection is repeated according to the number
of ‘diversion’ API calls to make, which was chosen
previously. The virus then encrypts its memory image, with
the exception of a small window, prior to calling the true
API. Upon return from the true API, the virus decrypts its
memory image, and then performs another set of ‘diversion’
API calls, as described above. The encryption key for the
memory image is changed each time this routine is called.
The intention of the routine is to defeat memory scanners
that perform their scanning whenever certain APIs are called.

The whole routine, beginning with the fi rst set of ‘diversion’
API calls, is called whenever the virus wishes to call an API
(with two exceptions: CreateThread and GetTickCount are
called directly – this is probably an oversight, since nearby
APIs within the same routine are called indirectly).

KAMIKAZE CODE
The virus searches within the current directory for ‘.exe’
fi les whose name begins with ‘kaze’. This appears to be a
bug, since the fi rst generation version of the virus uses one
string, but replicants of the virus use another. However, the
string has been duplicated, so the result is always the same.

For each such fi le, the virus begins by checking if the
SfcIsFileProtected API exists. If the API exists, then
the virus retrieves the full path of the fi le, converts the
pathname from ASCII to Unicode, and then checks if the

fi le is protected. This is the correct method to determine the
protection state. Most viruses that perform the check forget
that the API requires the full path to the fi le. However, if
the fi le is protected, the virus attempts to unmap a view of
the fi le and close some handles. The problem is that the fi le
has not yet been either opened or mapped. Fortunately, the
attempt simply returns an error, unless a debugger is present.
If a debugger is present, then closing the handle will cause
an exception, and a possible hang as described above.

If the fi le is not protected, then the virus attempts to open
it. If the attempt fails, then the virus skips the fi le, without
attempting to unmap or close it. If the open succeeds, the
virus maps a view of the fi le.

The virus contains only one bounds check when parsing the
fi le. That check is simply that the PE header starts within the
fi le. There is no check that the header ends within the fi le,
and the existence of an Import Table is assumed. This means
that certain valid but unusual fi les will cause an exception and
a possible hang, as described above. The virus is interested
in PE fi les that are not already infected, and which contain
an Import Table that is less than 4,066 bytes large. The virus
does not care if the fi le is really a DLL or a native executable.
The infection marker is that the second byte in the time/date
stamp in the PE header has a value of 0x36.

The virus places the infection marker immediately, and
resizes the fi le enough to hold the virus code. The virus
does not care about any data that has been appended to the
fi le outside of the image. Any such data will be destroyed
when the fi le is resized.

The virus searches for the section with the largest virtual
address. For fi les that run on Windows NT and later, this
will always be the last section. However, Windows 9x/Me
fi les do not have such a requirement. If the virtual size of
that section is larger than the physical size, then the virus
will not infect the fi le. However, the infection marker and
increased fi le size remain.

RELOCATION REQUIRED
With a 20% chance, and if the fi le contains relocations, the
virus will relocate the image. The virus parses the relocation
table, and applies the relocations to the image using a
new image base of 0x10000. After the relocation has been
completed, the relocation table is no longer required. There
is a bug in the parsing, which is that the virus assumes that
the relocation table ends when the page RVA is zero. The
assumption is incorrect. The size fi eld in the data directory
contains the true size. Further, the virus assumes that any
non-zero value is valid, but if the virus is reading data from
beyond the end of the relocation table, then it might cause
an exception and a possible hang, as described above.

VIRUS BULLETIN www.virusbtn.com

6 NOVEMBER 2009

When parsing the relocation data, the virus supports
only two types of relocation item. They are the IMAGE_
REL_BASED_ABSOLUTE and IMAGE_REL_BASED_
HIGHLOW. There are several other documented relocation
types, and if one of them is seen, then the virus will hit a
breakpoint and possibly hang as described above. However,
it is rare for fi les to use relocation types other than the
supported two.

After relocating the image, the virus chooses a new image
base randomly. The new image base always points into the
upper 2Gb of memory, and is 64kb-aligned. The alignment
is a requirement for Windows NT and later. It is interesting
that the virus appears to have been written to support older
versions of Windows, since it considers the presence of both
imagehlp.dll and sfc.dll to be optional. In fact, imagehlp.dll
was introduced in Windows 98, and sfc.dll was introduced
in Windows 2000, so the support goes back a long way.
However, the use of 0x10000 as the relocated image base ties
the virus to Windows 2000 and later. The reason for this is that
Windows NT does not relocate .exe fi les, and Windows 9x and
Me use 0x400000 as the default image base for relocated fi les.

DEP-RECATED CODE
The virus increases the size of the last section by 139,264
bytes, and changes the section attributes to read/write/
initialized. Unfortunately for the virus author, the
executable attribute is not set explicitly. As a result, if
the attribute was not already set in the original fi le, then
the virus will fail to execute on systems which have Data
Execution Protection enabled.

The virus saves information about the address and size of
resources and imports. The virus pays special attention
to the imports, parsing the table and saving pointers and
ranges. However, as before, there is no bounds checking
while saving the values, so a very large Import Table could
cause corruption of other entries in the list.

The virus will now choose a decryptor method to use. The
virus uses a crypto-based method 80% of the time. For the
other 20% of the time, it uses a simple 32-bit add-based
decryptor.

CRYPTONITE
If the crypto-based decryptor is chosen, the virus copies the
host’s Import Table to the original end of the last section
and updates its RVA in the data directory. The size of the
Import Table is increased by the size of one Import Table
record, and the Bound Import Table data directory entry is
erased. The virus appends to the Import Table an entry that
refers to the advapi32.dll fi le. The ‘advapi32.dll’ string is

appended to the section, at a random location beyond the
end of the Import Table. The fi ve crypto-related APIs that
the virus uses (CryptAcquireContextA, CryptCreateHash,
CryptHashData, CryptDeriveKey and CryptDecrypt) are
appended to the Import Table, interspersed with one to four
imports chosen randomly from a set of 75 ‘safe’ APIs from
the advapi32.dll fi le. The name of each API is placed at a
random location beyond the end of the Import Table. The
virus also contains code to replace the unused bytes with
random data, but this routine is never called.

SAFETY IN NUMBERS
The virus examines the host Import Table for references to
DLLs that it knows contain ‘safe’ APIs. Those DLLs are
kernel32.dll, ws2_32.dll, user32.dll and gdi32.dll. If one
of the ‘safe’ DLLs is imported, then the virus searches for
references to the ‘safe’ APIs. If any ‘safe’ API is imported,
then the virus adds the reference to a table within the
virus body. There is what might be considered a bug in the
search routine. The virus searches the entire Import Table
for a reference to the fi rst ‘safe’ DLL, then searches for
references to the ‘safe’ APIs of that DLL, then searches for
a reference to the second ‘safe’ DLL, and so on. However,
if the host does not import anything from one of the ‘safe’
DLLs, then the virus stops searching completely. None of
the following DLLs will be checked, and no more ‘safe’
APIs will be added to the table. Thus, in the extreme case, if
the host does not import anything from kernel32.dll, then no
‘safe’ APIs will be added at all.

The virus then copies the decryptor, and optionally inserts
calls to the ‘safe’ API if the crypto-based method was
chosen. As before, the method to choose from the ‘safe’
API table uses a count that is too large, resulting in empty
slots being seen, and thus no API call being inserted in that
instance. However, there are multiple places within the
decryptor where APIs can be inserted, which increases the
chance that at least one of them will succeed.

BAIT AND SWITCH
If the crypto-based method was chosen, the virus changes
the attributes of each section to read/write/initialized, until
the section containing the entrypoint is seen. However, the
virus chooses random locations only from within the section
that contains the entrypoint. The virus saves the contents
from each of the locations that were chosen, since they will
be replaced later by parts of the decryptor.

The virus then constructs a new decryptor. The decryptor
is described using a p-code language, which gives it great
fl exibility. The p-code contains only 57 instructions, but
they are quite capable of producing a seemingly wide

VIRUS BULLETIN www.virusbtn.com

7NOVEMBER 2009

variety of code. However, the characteristics of that code are
instantly recognizable, and the instruction set used is very
small. Some of the instructions are also called recursively,
so that, for example, a simple register assignment fi rst
becomes a series of assignments and adjustments through
other registers. The two types of decryptor together use
fewer than half of the possible instructions, but internally
those instructions use all but one of the remaining
instructions (the missing one is a ‘test’ instruction involving
a memory address and a constant). While interpreting the
p-code, the virus resolves the API calls, both real and fake,
and inserts random numbers for the parameters to the fake
APIs, and real parameters for the real APIs.

If the virus has relocated the image, then it will also
encrypt some of the blocks by using relocation items (for
a description of the process, see VB, April 2001, p.8). The
virus creates a new relocation table that contains only
the items for the decryptor, by overwriting the original
relocation table in the host. However, in contrast to ordinary
fi les, the virus places the relocation items in decreasing
order in the fi le, and calculates some page addresses using
values that are not page-aligned. These two characteristics
immediately make those fi les suspicious. The virus stops
applying relocations when fewer than 328 bytes of space
remain in the original table. There is a bug here, though,
which is that if the original table was less than 328 bytes
long, then the virus sets the table size to zero bytes. The
resulting fi le will no longer load, because when an image
must be relocated, Windows requires that a relocation
table contains at least the page address and the number of
relocation items (even if the number of items is zero).

ROCK CITY FUNK
At this point, the virus copies itself to the fi le in unencrypted
form. The encryption is performed next, on the copy of the
virus body, using the chosen method. The crypto-based
method uses a 128-bit RC4 cipher, with an MD5 hash as the
key. The key is derived from the four-byte Import Lookup
Table RVA in the fi rst entry of the new Import Table.

The virus increases the size of the image by 139,264 bytes,
and if the ChecksumMappedFile API is available, then the
virus uses it to calculate a checksum for the fi le. This results
in a fi le having a checksum that might not have existed
before. Finally, the fi le is unmapped and closed. The virus
then searches for the next fi le to infect.

Once all fi les have been examined, the virus displays the
message ‘Infecté’, if not running a fi rst generation of the
code. If the executing image is not a fi rst generation of the
code, then the virus changes the section attributes to read/
write/executable for the section that contains each block.
Of course, it’s too late to save the virus on DEP-enabled

systems. Since all of the blocks are chosen from the same
section that contains the entrypoint, changing the attributes
multiple times is ultimately pointless. It appears that the
virus author wanted to support blocks in multiple sections,
but this virus does not support it. After changing the
attributes of the blocks, the virus restores their contents.

GOSSAMER THREADS
After restoring the host to an executable state, the virus
creates a thread to search drives for other fi les, then run
the host. The thread registers another Structured Exception
Handler. However, this time only the second bug is present.
The virus initializes the pointer correctly, but the value to
write is still wrong. Further, if an exception occurs, then
the virus wants to exit the thread, but the problem is that
the code uses another register which has been modifi ed as a
result of the exception, and is now not initialized.

If no exception occurred, then the virus begins with drive
‘B:’ and proceeds though drive letters until the fi rst drive is
found which is either fi xed or removable. Only that drive
will be examined. This might also be considered a bug, but
the loop contains no other exit condition, so perhaps it was
intentional to stop after one drive. The idea of starting with
drive ‘B:’ rather than ‘A:’ could also introduce a bug, in the
(admittedly rather unlikely) event that the only drive on the
system is ‘A:’. In that case, all possible values would be
tested, but even so, eventually the value would wrap around
and the ‘A:’ drive would be found. When an appropriate
drive is found, the virus sleeps for one second before
beginning the search for fi les. The search is for ‘kaze’ fi les,
as described above. Upon completing the search for fi les,
the virus will search for directories. If a directory is found,
then the virus will enter the directory and begin the search
again, after sleeping for one second, as before. If no other
directories are found, then the virus will step out of the
current directory and resume the search. After all directories
have been examined, the thread will exit.

In the event that the host process fi nishes before the virus
thread exits, the virus thread will be forcibly terminated.
This could result in a corrupted fi le if the virus was in the
act of infecting it at the time.

CONCLUSION
Zekneol certainly appears to be a complicated virus, but
looks can be deceiving. The crypto-based decryptor has
so many tell-tale signs that detection is straightforward;
the simple decryptor is really very simple; and the new
relocation table looks like no other.

As for how we choose the names for viruses, that’s a
question for another day.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

